login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119805 a(1) = 1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = number of earlier terms of the sequence which equal k. 2
1, 1, 2, 1, 3, 1, 1, 0, 5, 1, 1, 0, 1, 0, 0, 0, 8, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

8 = 2^2 + 4; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal 4. So a(8) = 0.

PROG

(PARI) A119805(mmax)= { local(a, ncopr); a=[1]; for(m=0, mmax, for(k=1, 2^m, ncopr=0; for(i=1, 2^m+k-1, if( a[i]==k, ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119805(6)); } - R. J. Mathar, May 30 2006

CROSSREFS

Cf. A119804.

Sequence in context: A199056 A144966 A320000 * A111957 A125168 A324725

Adjacent sequences:  A119802 A119803 A119804 * A119806 A119807 A119808

KEYWORD

easy,nonn

AUTHOR

Leroy Quet, May 24 2006

EXTENSIONS

More terms from R. J. Mathar, May 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 15:51 EST 2019. Contains 329019 sequences. (Running on oeis4.)