login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119804 a(0) = 0. For m >= 0 and 0 <= k <= 2^m -1, a(2^m +k) = number of earlier terms of the sequence which equal k. 2
0, 1, 1, 2, 1, 3, 1, 1, 1, 6, 1, 1, 0, 0, 1, 0, 4, 9, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 13, 14, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 21, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..102.

EXAMPLE

8 = 2^3 + 0; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal 0. So a(8) = 1.

PROG

(PARI) A119804(mmax)= { local(a, ncopr); a=[0]; for(m=0, mmax, for(k=0, 2^m-1, ncopr=0; for(i=1, 2^m+k, if( a[i]==k, ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119804(6)); } - R. J. Mathar, May 30 2006

CROSSREFS

Cf. A119805.

Sequence in context: A265917 A057021 A152443 * A300977 A144869 A247564

Adjacent sequences:  A119801 A119802 A119803 * A119805 A119806 A119807

KEYWORD

easy,nonn

AUTHOR

Leroy Quet, May 24 2006

EXTENSIONS

More terms from R. J. Mathar, May 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 09:59 EDT 2019. Contains 322309 sequences. (Running on oeis4.)