

A119803


a(0) = 0. For m >= 0 and 0 <= k <= 2^m 1, a(2^m +k) = number of earlier terms of the sequence which equal a(k).


2



0, 1, 1, 2, 1, 3, 3, 1, 1, 5, 5, 1, 6, 2, 2, 6, 1, 7, 7, 3, 7, 3, 4, 7, 7, 2, 2, 7, 2, 6, 6, 4, 1, 8, 8, 6, 8, 4, 4, 8, 8, 2, 2, 8, 5, 8, 8, 5, 8, 6, 6, 4, 6, 4, 6, 6, 6, 8, 8, 6, 8, 12, 12, 6, 1, 9, 9, 8, 9, 4, 4, 9, 9, 4, 4, 9, 13, 8, 8, 13, 9, 6, 6, 4, 6, 4, 12, 6, 6, 8, 8, 6, 8, 19, 19, 12, 9, 18, 18, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

8 = 2^3 + 0; so for a(8) we want the number of terms among terms a(1), a(2),... a(7) which equal a(0) = 0. So a(8) = 1.


PROG

(PARI) A119803(mmax)= { local(a, ncopr); a=[0]; for(m=0, mmax, for(k=0, 2^m1, ncopr=0; for(i=1, 2^m+k, if( a[i]==a[k+1], ncopr++; ); ); a=concat(a, ncopr); ); ); return(a); } { print(A119803(6)); }  R. J. Mathar, May 30 2006


CROSSREFS

Cf. A119802.
Sequence in context: A081446 A274309 A158440 * A195916 A245554 A110569
Adjacent sequences: A119800 A119801 A119802 * A119804 A119805 A119806


KEYWORD

easy,nonn


AUTHOR

Leroy Quet, May 24 2006


EXTENSIONS

More terms from R. J. Mathar, May 30 2006


STATUS

approved



