The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119727 Triangular array: T(n,k) = T(n,n) = 1, T(n,k) = 5*T(n-1, k-1) + 2*T(n-1, k), read by rows. 4
 1, 1, 1, 1, 7, 1, 1, 19, 37, 1, 1, 43, 169, 187, 1, 1, 91, 553, 1219, 937, 1, 1, 187, 1561, 5203, 7969, 4687, 1, 1, 379, 4057, 18211, 41953, 49219, 23437, 1, 1, 763, 10009, 56707, 174961, 308203, 292969, 117187, 1, 1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Second column is A048488. Second diagonal is A057651. REFERENCES TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened EXAMPLE Triangle begins as:   1;   1,    1;   1,    7,     1;   1,   19,    37,      1;   1,   43,   169,    187,      1;   1,   91,   553,   1219,    937,       1;   1,  187,  1561,   5203,   7969,    4687,       1;   1,  379,  4057,  18211,  41953,   49219,   23437,       1;   1,  763, 10009,  56707, 174961,  308203,  292969,  117187,      1;   1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1; MAPLE T:= proc(n, k) option remember;       if k=1 and k=n then 1     else 5*T(n-1, k-1) + 2*T(n-1, k)       fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 5*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *) PROG (PARI) T(n, k) = if(k==1 || k==n, 1, 5*T(n-1, k-1) + 2*T(n-1, k)); \\ G. C. Greubel, Nov 18 2019 (MAGMA) function T(n, k)   if k eq 1 or k eq n then return 1;   else return 5*T(n-1, k-1) + 2*T(n-1, k);   end if;   return T; end function; [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019 (Sage) @CachedFunction def T(n, k):     if (k==1 or k==n): return 1     else: return 5*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019 CROSSREFS Cf. A007318, A048488, A057651, A119725, A119726. Sequence in context: A176284 A154233 A174033 * A157272 A176200 A046739 Adjacent sequences:  A119724 A119725 A119726 * A119728 A119729 A119730 KEYWORD easy,nonn,tabl AUTHOR Zerinvary Lajos, Jun 14 2006 EXTENSIONS Edited by Don Reble, Jul 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 15:47 EDT 2020. Contains 337265 sequences. (Running on oeis4.)