login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119722 Numerator of generalized harmonic number H(p-1,p)= Sum[ 1/k^p, {k,1,p-1}] divided by p^3 for prime p>3. 9
2063, 2743174627, 19563315706517008974432827112201617, 2597378078067393746941400113704449589199274012223316613, 777478358612529699991463948563778410644748121498526065585976638854277886379480749840301120148933 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3.

LINKS

Table of n, a(n) for n=3..7.

Eric Weisstein's World of Mathematics, Wolstenholme's Theorem

Eric Weisstein's World of Mathematics, Harmonic Number

FORMULA

a(n) = numerator[ Sum[ 1/k^Prime[n], {k,1,Prime[n]-1} ]] / Prime[n]^3 for n>2.

EXAMPLE

Prime[3] = 5.

a(3) = numerator[ 1 + 1/2^5 + 1/3^5 + 1/4^5 ] / 5^3 = 257875/125 = 2063.

Prime[4] = 7

a(4) = numerator[ 1 + 1/2^7 + 1/3^7 + 1/4^7 + 1/5^7 + 1/6^7 ] / 7^3 = 2743174627.

MATHEMATICA

Numerator[Table[Sum[1/k^Prime[n], {k, 1, Prime[n]-1}], {n, 3, 9}]]/Table[Prime[n]^3, {n, 3, 9}]

CROSSREFS

Cf. A099828, A099827, A001008, A007406, A007408, A007410.

Sequence in context: A184227 A203351 A106719 * A234110 A200203 A204314

Adjacent sequences:  A119719 A119720 A119721 * A119723 A119724 A119725

KEYWORD

frac,nonn

AUTHOR

Alexander Adamchuk, Jun 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 17:13 EDT 2019. Contains 328186 sequences. (Running on oeis4.)