login
A119692
a(n) = binomial(2*n,n) * Fibonacci(n).
1
0, 2, 6, 40, 210, 1260, 7392, 44616, 270270, 1653080, 10161580, 62783448, 389398464, 2423339800, 15123958200, 94621687200, 593266344930, 3726769133340, 23450149615200, 147778547947800, 932531767467300, 5891770693620240, 37265696746444920, 235945424360833200
OFFSET
0,2
FORMULA
a(n) = 2 * A119693(n).
Sum_{n>=0} a(n)/8^n = sqrt(2/5). - Amiram Eldar, May 04 2023
G.f.: -(2*sqrt(-16*x^2-4*x+1)-16*x-2)/(sqrt(10)*sqrt(-16*x^2-4*x+1)*sqrt(4*sqrt(-16*x^2-4*x+1)+8*x+6)). - Vladimir Kruchinin, Apr 17 2024
MAPLE
seq(binomial(2*n, n)*combinat[fibonacci](n), n=0..27);
MATHEMATICA
Table[Binomial[2n, n]Fibonacci[n], {n, 0, 20}] (* Harvey P. Dale, Feb 29 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Jun 09 2006
STATUS
approved