login
A119607
Number of primes of the form f(n) - 1, where f(n) is the product of one or more divisors of n.
2
0, 0, 1, 2, 0, 4, 0, 3, 1, 1, 0, 11, 0, 2, 1, 4, 0, 8, 0, 6, 1, 2, 0, 18, 0, 1, 1, 6, 0, 25, 0, 5, 1, 2, 0, 21, 0, 1, 1, 11, 0, 25, 0, 5, 1, 0, 0, 27, 0, 4, 1, 5, 0, 13, 0, 11, 1, 0, 0, 83, 0, 1, 1, 7, 0, 17, 0, 7, 1, 11, 0, 34, 0, 1, 1, 7, 0, 15, 0, 17, 1, 2, 0, 71, 0, 1, 1, 7, 0, 66, 0, 6, 1, 0, 0, 36
OFFSET
1,4
LINKS
EXAMPLE
The divisors of 4 are D = {1, 2, 4} and the subsets of D are {{}, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}}. Taking the product of elements in these subsets and subtracting 1 yields {-1, 0, 1, 3, 1, 3, 7, 7}, of which the primes are {3, 7}.
MATHEMATICA
Do[l = Subsets[Divisors[n]]; l = Union[Map[Times @@ # - 1&, l]]; Print[Length[Select[l, PrimeQ]]], {n, 100}]
Table[Count[Union[Times@@@Subsets[Divisors[n]]]-1, _?PrimeQ], {n, 100}] (* Harvey P. Dale, Mar 31 2018 *)
CROSSREFS
Cf. A084419.
Sequence in context: A239489 A259759 A364817 * A279968 A164297 A349240
KEYWORD
nonn
AUTHOR
Ryan Propper, Jun 04 2006
STATUS
approved