|
|
A119591
|
|
Least k such that 2*n^k - 1 is prime.
|
|
3
|
|
|
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,4
|
|
COMMENTS
|
From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
|
|
LINKS
|
Eric Chen, Table of n, a(n) for n = 2..302
|
|
MATHEMATICA
|
f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
|
|
PROG
|
(PARI) a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015
|
|
CROSSREFS
|
Cf. A119624, A253178.
Sequence in context: A183102 A178649 A335502 * A333782 A304876 A010125
Adjacent sequences: A119588 A119589 A119590 * A119592 A119593 A119594
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Jun 01 2006
|
|
EXTENSIONS
|
Corrected and extended by Ray Chandler, Jun 08 2006
|
|
STATUS
|
approved
|
|
|
|