

A119505


The Pith digit of Pi where the digit value of 0 is interpreted as decimal 10.


6



4, 3, 1, 3, 5, 5, 1, 9, 5, 4, 5, 6, 5, 2, 5, 4, 1, 4, 6, 1, 9, 1, 9, 1, 4, 4, 6, 4, 1, 2, 5, 5, 3, 1, 6, 6, 1, 3, 5, 2, 3, 9, 5, 4, 5, 5, 4, 2, 5, 3, 3, 5, 6, 1, 3, 5, 2, 1, 5, 1, 1, 5, 5, 1, 4, 3, 2, 6, 3, 9, 1, 3, 9, 1, 6, 9, 1, 3, 6, 5, 5, 6, 9, 1, 6, 3, 4, 1, 6, 1, 5, 4, 1, 1, 3, 3, 2, 3, 9, 2, 5, 6, 1, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The numbers formed in this sequence are 1,2,3,4,5,6,9. Conjecture: The terms of this sequence are nonrepeating and nonterminating.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000
A. Frank and P. Jacqueroux, International contest, (2001) Sequence 26. [From R. J. Mathar, Feb 23 2009]


FORMULA

Let the ith digit of Pi be the digit of Pi in the ith position. Then the Pith digit of Pi is the digit of Pi in the position corresponding to the value of the ith digit.
a(n) = A000796(A010889(9+A000796(n))).  R. J. Mathar, Feb 23 2009


EXAMPLE

The digit of Pi in the first position is 3, and the digit of Pi in the third position is 4, the first term in the table.


MATHEMATICA

id = RealDigits[Pi, 10, 105][[1]]; id[[0]] = 3; Table[id[[id[[n]] ]], {n, 105}] (* Robert G. Wilson v, Mar 17 2009 *)


PROG

(PARI) g(n)=a=Vec(Str(Pi*10^9990)); for(x=1, n, v=eval(a[x]); if(v==0, print1(a[v+10]", "), print1(a[v]", ")))


CROSSREFS

Sequence in context: A010306 A197700 A006467 * A201518 A168616 A296218
Adjacent sequences: A119502 A119503 A119504 * A119506 A119507 A119508


KEYWORD

base,nonn


AUTHOR

Cino Hilliard, May 27 2006


EXTENSIONS

Missing terms a(33), a(55) and a(66) inserted by R. J. Mathar, Feb 23 2009


STATUS

approved



