

A119498


Consider the sign of A067276: determinant of n X n matrix containing the first n^2 primes in increasing order; then a(n) = 0 if negative and 1 if positive.


0



1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The determinant of A can never be 0 since there is an even prime in the mix.
Conjecture: This sequence never cycles.
Positions where the race between the zeros and the ones is tied: 2,4,16,34,36,38,40,42,46,66,78,80,82,84, ...,.


LINKS

Table of n, a(n) for n=1..105.


MATHEMATICA

f[n_] := Sign@ Det@ Partition[ Array[Prime, n^2], n]; Array[f, 105] /. 1 > 0


CROSSREFS

Cf. A000040, A067276.
Sequence in context: A120523 A269625 A030315 * A070912 A014108 A014207
Adjacent sequences: A119495 A119496 A119497 * A119499 A119500 A119501


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, May 26 2006


STATUS

approved



