login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119463 Expansion of q^2 in powers of m/16 where q is Jacobi nome and m is the parameter. 1
0, 0, 1, 16, 232, 3328, 47956, 696256, 10185824, 150050816, 2224086242, 33144506016, 496287233040, 7462288270848, 112621324354952, 1705306407267200, 25898042412463808, 394353145059565568 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..600

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

Expansion of exp(2*Pi*i*tau) in powers of lambda(tau)/16 where lambda is elliptic lambda function

G.f.: exp(-2*Pi*agm(1, sqrt(1-16x))/agm(1, sqrt(16x))).

MATHEMATICA

CoefficientList[Series[EllipticNomeQ[16*x]^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 07 2019 *)

PROG

(PARI) {a(n)=if(n<2, 0, n-=2; polcoeff( serreverse(x*prod(k=1, n, (1+x^k)^(-1)^k, 1+x*O(x^n))^8)^2, n+2))}

(PARI) {a(n)=n-=2; if(n<=0, n==0, polcoeff( subst(serreverse(1/ellj(x+x*O(x^n))), x, (x-16*x^2)^2/(1-16*x+256*x^2)^3), n+2))}

CROSSREFS

Cf. A005797.

Sequence in context: A166903 A230234 A274467 * A292341 A222389 A222938

Adjacent sequences:  A119460 A119461 A119462 * A119464 A119465 A119466

KEYWORD

nonn

AUTHOR

Michael Somos, May 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 14:20 EDT 2022. Contains 357090 sequences. (Running on oeis4.)