login
Primes p=prime(i) of level (1,9), i.e., such that A118534(i)=prime(i-9).
10

%I #18 Jun 19 2021 04:53:18

%S 678659,855739,1403981,2366543,2744783,2830657,3027539,3317033,

%T 4525909,4676851,5341463,5819563,7087123,7181897,8815663,9324257,

%U 9878929,9976937,10403251,10440641,10447457,10766411,10787377,11829151,11881957,12539389,14026433,14087179

%N Primes p=prime(i) of level (1,9), i.e., such that A118534(i)=prime(i-9).

%C This subsequence of A125830 and of A162174 gives primes of level (1,9): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

%H Fabien Sibenaler, <a href="/A119404/b119404.txt">Table of n, a(n) for n = 1..10000</a>

%e prime(780815) - prime(780814) = 11882071 - 11881957 = 11881957 - 11881843 = prime(780814) - prime(780814-9) and prime(780814) has level 1 in A117563, so prime(780814)=11881957 has level (1,9).

%Y Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467.

%K nonn

%O 1,1

%A _RĂ©mi Eismann_ and _Fabien Sibenaler_, Jul 25 2006

%E Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009