login
A119395
Number of nonnegative integer solutions to the equation x^2 + 3y^2 = n.
9
1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0
OFFSET
0,5
COMMENTS
The number of integer solutions is given by A033716.
Records 1, 2, 3, 5, 6, 9, 12, 14, 18, ... occur at 0, 4, 28, 196, 364, 2548, 6916, 33124, 48412, ... - Antti Karttunen, Nov 20 2017
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
For n > 0, a(n) = (A033716(n) + 2)/4 if n is a square or a triple of a square; otherwise a(n) = A033716(n)/4. Alternatively, a(n) = ceiling(A033716(n)/4).
G.f.: (1 + theta_3(q))*(1 + theta_3(q^3))/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018
MATHEMATICA
QP = QPochhammer;
s = (QP[q^2]*QP[q^6])^5/(QP[q]*QP[q^3]*QP[q^4]*QP[q^12])^2 + O[q]^105;
A033716 = CoefficientList[s, q];
A119395 = Ceiling[A033716/4] (* Jean-François Alcover, Jul 02 2018 *)
PROG
(PARI) { A033716(n) = local(f, B); f=factorint(n); B=1; for(i=1, matsize(f)[1], if(f[i, 1]%3==1, B*=f[i, 2]+1); if(f[i, 1]%3==2, if(f[i, 2]%2, return(0)))); if(n%4, 2*B, 6*B) } { a(n) = ceil(A033716(n)/4) }
CROSSREFS
Sequence in context: A005089 A364127 A340999 * A087476 A307505 A035162
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 16 2006
STATUS
approved