login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119308 Triangle for first differences of Catalan numbers. 3
1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are A000245(n+1). Columns include A000330, A006414, as well as certain Kekulé numbers (A114242, A108647, ...).

Diagonal sums are A188460.

Coefficient array of the second column of the inverse of the Riordan array ((1+r*x)/(1+(r+1)x+r*x^2), x/(1+(r+1)x+r*x^2)). - Paul Barry, Apr 01 2011

LINKS

Indranil Ghosh, Rows 0..100, flattened

FORMULA

T(n,k) = sum{j=0..n, C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1)}; column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1));

T(n,k) = sum{j=0..n, C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k),0)}.

EXAMPLE

Triangle begins:

1;

2,   1;

3,   5,    1;

4,  14,    9,    1;

5,  30,   40,   14,    1;

6,  55,  125,   90,   20,    1;

7,  91,  315,  385,  175,   27,   1;

8, 140,  686, 1274,  980,  308,  35,  1;

9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;

MATHEMATICA

a[k_, j_]:=If[k<=j, Binomial[j+1, 2(j-k)]*CatalanNumber[j-k], 0];

Flatten[Table[Sum[Binomial[n, j]*a[k, j], {j, 0, n}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 03 2017 *)

PROG

(PARI)

catalan(n)=binomial(2*n, n)/(n+1);

a(k, j)=if (k<=j, binomial(j+1, 2*(j-k))*catalan(j-k), 0);

tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n, j)*a(k, j)), ", "); ); print(); ); };

tabl(10); \\ Indranil Ghosh, Mar 03 2017

CROSSREFS

Cf. A001263.

Sequence in context: A153277 A104029 A208752 * A110197 A124819 A124019

Adjacent sequences:  A119305 A119306 A119307 * A119309 A119310 A119311

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, May 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:33 EST 2019. Contains 329960 sequences. (Running on oeis4.)