Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #26 May 03 2019 08:42:00
%S 0,9,191,3303,46188,557005,6481183,76292782,881025347,9763247930,
%T 106864564286,1162019145892
%N Total number of zero digits in first 10^n primes.
%C Count the zero digits in the first 10^n primes.
%F a(n) = Sum_{j=1..10^n} A055641(A000040(j)). - _R. J. Mathar_, May 30 2008
%e a(2)=9 since there are 9 zero digits in the first 100 primes.
%p A055641 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,10) do if d = 0 then a := a+1 ; fi ; od: a ; end: p := 2: n := 1: c :=0 : nsw := 10 : while true do n := n+1 ; p := nextprime(p) ; c := c+A055641(p) ; if n = nsw then print(c) ; nsw := 10*nsw ; fi ; od: # _R. J. Mathar_, May 30 2008
%t Table[Count[IntegerDigits[Prime[Range[10^n]]], 0, 2], {n, 6}] (* _Robert Price_, May 02 2019 *)
%o (PARI) my(x=10, i=0, j=0); forprime(p=1, , j++; my(d=digits(p)); i+=#setintersect(vecsort(d), vector(#d, t, 0)); if(j==x, print1(i, ", "); x=10*x)) \\ _Felix Fröhlich_, May 02 2019
%Y Cf. A119290, A119292-A119300.
%K more,nonn,base
%O 1,2
%A _Enoch Haga_, May 13 2006
%E a(8)-a(11) from _Robert Price_, Nov 05 2013
%E a(12) from _Marek Hubal_, Mar 04 2019