login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) is the total number of digits in the first 10^n primes.
22

%I #27 Jan 20 2025 03:50:03

%S 1,16,271,3803,48982,610484,7245905,83484450,942636916,10487584405,

%T 115369529592,1257761617574,13611696080735,146406754329933,

%U 1566562183907264,16687323842873339,177063766685219106,1872323812397478246,19738266145121133639,207517446542560214799,2176390177056541482871,22774922890367225576581

%N a(n) is the total number of digits in the first 10^n primes.

%H Amiram Eldar, <a href="/A119290/b119290.txt">Table of n, a(n) for n = 0..24</a>

%F Count the digits in the first 10^n primes.

%F a(n) = sum while positive from k=0 to (10^n - A006880(k)). - _Charles R Greathouse IV_, Jul 09 2007

%e At a(1) there are 10^1 primes, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and the total number of digits is 16.

%t Accumulate@Table[c = 0; i0 = If[n == 0, 1, 10^(n - 1) + 1]; For[i = i0, i <= 10^n, i++, c += IntegerLength[Prime[i]]]; c, {n, 0, 6}] (* _Robert Price_, Jun 09 2019 *)

%Y Cf. A006880, A006988, A097952.

%K nonn,base,changed

%O 0,2

%A _Enoch Haga_, May 13 2006

%E Corrected and extended by _Charles R Greathouse IV_, Jul 09 2007