login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119275 Inverse of triangle related to Padé approximation of exp(x). 5
1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Inverse of A119274.

Row sums are (-1)^(n+1)*A000321(n+1).

Bell polynomials of the second kind B(n,k)(1,-2). - Vladimir Kruchinin, Mar 25 2011

Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) giving unsigned values and adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

LINKS

Table of n, a(n) for n=0..65.

Eric Weisstein's World of Mathematics, Bell Polynomial

FORMULA

T(n,k) = [k<=n]*(-1)^(n-k)*(n-k)!*C(n+1,k+1)*C(k+1,n-k).

From Peter Bala, May 07 2012: (Start)

E.g.f.: exp(x*(t-t^2)) - 1 = x*t + (-2*x+x^2)*t^2/2! + (-6*x^2+x^3)*t^3/3! + (12*x^2-12*x^3+x^4)*t^4/4! + .... Cf. A059344. Let D denote the operator sum {k >= 0} (-1)^k/k!*x^k*(d/dx)^(2*k). The n-th row polynomial R(n,x) = D(x^n) and satisfies the recurrence equation R(n+1,x) = x*R(n,x)-2*n*x*R(n-1,x). The e.g.f. equals D(exp(x*t)).

(End)

From Tom Copeland, Oct 11 2016: (Start)

With initial index n = 1 and unsigned, these are the partition row polynomials of A130561 and A231846 with c_1 = c_2 = x and c_n = 0 otherwise. The first nonzero, unsigned element of each diagonal is given by A001813 (for each row, A001815) and dividing along the corresponding diagonal by this element generates A098158 with its first column removed (cf. A034839 and A086645).

The n-th polynomial is generated by (x - 2y d/dx)^n acting on 1 and then evaluated at y = x, e.g., (x - 2y d/dx)^2 1 = (x - 2y d/dx) x = x^2 - 2y evaluated at y = x gives p_2(x) = -2x + x^2.

(End)

EXAMPLE

Triangle begins

1,

-2, 1,

0, -6, 1,

0, 12, -12, 1,

0, 0, 60, -20, 1,

0, 0, -120, 180, -30, 1,

0, 0, 0, -840, 420, -42, 1,

0, 0, 0, 1680, -3360, 840, -56, 1,

0, 0, 0, 0, 15120, -10080, 1512, -72, 1

Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> `if`(n<2, (n+1)*(-1)^n, 0), 9); # Peter Luschny, Jan 27 2016

MATHEMATICA

Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)

BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

rows = 12;

M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];

Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

PROG

(Sage)

# The function inverse_bell_matrix is defined in A265605.

# Unsigned values and an additional first column (1, 0, 0, ...).

multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))

inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015

CROSSREFS

Cf. A059344 (unsigned row reverse).

Cf. A034839, A001813, A001815, A086645, A098158, A130561, A231846.

Sequence in context: A181297 A196776 A157982 * A129462 A122930 A066387

Adjacent sequences:  A119272 A119273 A119274 * A119276 A119277 A119278

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, May 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:08 EST 2018. Contains 318148 sequences. (Running on oeis4.)