login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119248 Difference between denominator and numerator of the n-th alternating harmonic number Sum[(-1)^(k+1)*1/k,{k,1,n}] = A058313(n)/A058312(n). 0

%I

%S 0,1,1,5,13,23,101,307,641,893,7303,9613,97249,122989,19793,48595,

%T 681971,818107,13093585,77107553,66022193,76603673,1529091919,

%U 1752184789,7690078169,8719737569,23184641107,3721854001,96460418429

%N Difference between denominator and numerator of the n-th alternating harmonic number Sum[(-1)^(k+1)*1/k,{k,1,n}] = A058313(n)/A058312(n).

%F a(n) = Denominator[Sum[(-1)^(k+1)*1/k,{k,1,n}]] - Numerator[Sum[(-1)^(k+1)*1/k,{k,1,n}]]. a(n) = A058312(n) - A058313(n). a(n) = A075829(n+1).

%t Denominator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n}],{n,1,30}]]

%Y Cf. A058312, A058313, A075829.

%K nonn

%O 1,4

%A _Alexander Adamchuk_, Jul 22 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:32 EDT 2019. Contains 323514 sequences. (Running on oeis4.)