login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119020 Eigenvector of triangle A055151 of Motzkin polynomial coefficients, where A055151(n,k) = n!/((n-2k)!*k!*(k+1)!) for 0<=k<=[n/2], n>=0. 3
1, 1, 2, 4, 11, 31, 96, 302, 1023, 3607, 13318, 50348, 195361, 772565, 3112630, 12715692, 52648847, 220705119, 937145214, 4028239116, 17522172021, 77071709841, 342583183572, 1537550150766, 6961838925069, 31774593686661 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform is A119021. Inverse binomial transform is A119022.

LINKS

Table of n, a(n) for n=0..25.

FORMULA

Eigenvector: a(n) = Sum_{k=0..[n/2]} n!/((n-2k)!*k!*(k+1)!)*a(k), for n>=0, with a(0)=1. G.f. satisfies: A(x) = A(-x/(1-2*x))/(1-2*x)); i.e., 2nd inverse binomial transform equals A(-x). G.f. satisfies: A(x/(1-x))/(1-x)) = A(-x/(1-3*x))/(1-3*x). G.f. of inverse binomial transform: A(x/(1+x))/(1+x)) = B(x^2) where [x^n] B(x) = a(n)*C(2*n,n)/(n+1) = a(n)*A000108(n) and A000108=Catalan.

EXAMPLE

A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 96*x^6 +...

A(x/(1+x))/(1+x) = 1 + x^2 + 2*2*x^4 + 4*5*x^6 + 11*14*x^8 +...

+ a(n)*A000108(n)*x^(2n) +...

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, n!/((n-2*k)!*k!*(k+1)!)*a(k)))}

CROSSREFS

Cf. A055151 (Motzkin polynomials), A119021 (binomial), A119022 (inverse binomial).

Sequence in context: A039300 A247333 A118974 * A073191 A173139 A148164

Adjacent sequences:  A119017 A119018 A119019 * A119021 A119022 A119023

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 09 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 05:55 EDT 2020. Contains 337267 sequences. (Running on oeis4.)