OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
a(n) = Sum_{k=1,..,n} k*A118972(n,k).
G.f.: z^2*CF(1+C-zC)/(1-z), where F = [1-sqrt(1-4*z)]/[z*(3-sqrt(1-4*z)] and C = [1-sqrt(1-4*z)]/(2*z) is the Catalan function.
a(n) ~ 17*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+1)*(17*n^2-65*n+60)*a(n) -3*(3*n-4)*(17*n^2-48*n+15)*a(n-1) +3*(17*n^3-82*n^2+121*n-60)*a(n-2) +2*(2*n-5) *(17*n^2-31*n+12) *a(n-3)=0. - R. J. Mathar, Jun 22 2016
EXAMPLE
a(4)=11 because in the hill-free Dyck paths of semilength 4, namely uu(dd)uudd, uu(d)uuddd, uu(d)ududd, uuu(dd)udd, uuu(d)uddd and uuuu(dddd), the sum of the lengths of the first descents (shown between parentheses) is 2+1+1+2+1+4=11.
MAPLE
F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=series(z^2*C*F*(1+C-z*C)/(1-z), z=0, 32): seq(coeff(g, z, n), n=0..28);
MATHEMATICA
CoefficientList[Series[x^2*(1-Sqrt[1-4*x])/2/x*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1+(1-Sqrt[1-4*x])/2/x-x*(1-Sqrt[1-4*x])/2/x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x^2*(1-sqrt(1-4*x))/2/x*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1+(1-sqrt(1-4*x))/2/x-x*(1-sqrt(1-4*x))/2/x)/(1-x))) \\ G. C. Greubel, Mar 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 08 2006
STATUS
approved