OFFSET
1,1
COMMENTS
For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[(#^2+7)/8]&]
PROG
(PARI) lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ); ); } \\ Michel Marcus, Feb 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, May 06 2006
STATUS
approved