login
A118940
Primes p such that (p^2+7)/8 is prime.
5
3, 7, 17, 23, 41, 47, 71, 89, 103, 113, 127, 137, 151, 191, 193, 199, 223, 263, 271, 281, 337, 359, 401, 439, 457, 503, 521, 569, 577, 599, 641, 719, 727, 751, 839, 857, 863, 881, 887, 929, 991, 1009, 1033, 1097, 1103, 1151, 1193, 1217, 1231, 1279, 1297, 1303
OFFSET
1,1
COMMENTS
For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[(#^2+7)/8]&]
PROG
(PARI) lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ); ); } \\ Michel Marcus, Feb 18 2018
CROSSREFS
Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118941 and A118942.
Sequence in context: A277213 A152451 A097958 * A127175 A339943 A127355
KEYWORD
nonn
AUTHOR
T. D. Noe, May 06 2006
STATUS
approved