login
A118926
Invariant column vector V under matrix product A104546*V = V: a(n) = Sum_{k=0,[n/2]} A104546(n,k)*a(k).
1
1, 2, 7, 28, 125, 598, 3007, 15708, 84585, 466954, 2632167, 15103676, 88012801, 519848442, 3107443803, 18774545752, 114527169657, 704731976138, 4370943547471, 27306560735812, 171728169545661, 1086605771091766
OFFSET
0,2
COMMENTS
Triangle A104546(n,k) = the number of Schroeder paths of length 2n and having k platforms.
FORMULA
Self-convolution of A118927.
PROG
(PARI) {a(n)=local(G=1+x+x*O(x^n)); if(n==0, 1, for(i=0, n, G=1+x*G+x*G*(G+(y-1)*x/(1-x))); sum(k=0, n\2, a(k)*polcoeff(polcoeff(G+y*O(y^k), n, x), k, y)))}
CROSSREFS
Cf. A104546, A118927 (self-convolution square-root).
Sequence in context: A088702 A112565 A227845 * A127084 A362555 A252737
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved