login
A118918
Primes p such that (p^2+11)/12 is prime.
9
5, 7, 11, 19, 29, 61, 71, 79, 89, 109, 151, 179, 181, 191, 199, 271, 281, 349, 379, 389, 421, 439, 479, 521, 541, 569, 631, 659, 691, 809, 821, 829, 839, 919, 971, 1019, 1051, 1061, 1069, 1091, 1289, 1439, 1511, 1621, 1699, 1709, 1789, 1811, 1871, 2069, 2141
OFFSET
1,1
COMMENTS
For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2+11.
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[(#^2+11)/12]&]
CROSSREFS
Cf. A109953 (primes p such that (p^2+1)/3 is prime), A118915 (primes p such that (p^2+11)/12 is prime).
Sequence in context: A072825 A045440 A023235 * A019376 A159080 A349821
KEYWORD
nonn
AUTHOR
T. D. Noe, May 05 2006
STATUS
approved