The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118914 Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers. 199
 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 6, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Since the prime factorization of 1 is the empty product (i.e., the multiplicative identity, 1), it follows that the prime signature of 1 is the empty multiset { }. (Cf. http://oeis.org/wiki/Prime_signature) MathWorld wrongly defines the prime signature of 1 as {1}, which is actually the prime signature of primes. The sequences A025487, A036035, A046523 consider the prime signatures of 1 and 2 to be distinct, implying { } for 1 and {1} for 2. Since the prime signature of n is a partition of Omega(n), also true for Omega(1) = 0, the order of exponents is only a matter of convention (using reverse sorted lists of exponents would create a different sequence). Here the multisets of nonzero exponents are sorted in increasing order; it is slightly more common to order them, as the parts of partitions, in decreasing order. This yields A212171. - M. F. Hasler, Oct 12 2018 LINKS Reinhard Zumkeller, Rows n = 2..1000 of table, flattened Eric Weisstein's World of Mathematics, Prime Signature OEIS Wiki, Prime signatures OEIS Wiki, Ordered prime signatures EXAMPLE The table starts:   n : prime signature of n  (factorization of n)   1 : {},                   (empty product)   2 : {1},                  (2^1)   3 : {1},                  (3^1)   4 : {2},                  (2^2)   5 : {1},                  (5^1)   6 : {1, 1},               (2^1 * 3^1)   7 : {1},                  (5^1)   8 : {3},                  (2^3)   9 : {2},                  (3^2)   10 : {1, 1},              (2^1 * 5^1)   11 : {1},                 (11^1)   12 : {1, 2},              (2^2 * 3^1, but exponents are sorted increasingly)   etc. MATHEMATICA primeSignature[n_] := Sort[ FactorInteger[n] , #1[] < #2[]&][[All, 2]]; Flatten[ Table[ primeSignature[n], {n, 2, 65}]](* Jean-François Alcover, Nov 16 2011 *) PROG (Haskell) import Data.List (sort) a118914 n k = a118914_tabf !! (n-2) !! (k-1) a118914_row n = a118914_tabf !! (n-2) a118914_tabf = map sort \$ tail a124010_tabf -- Reinhard Zumkeller, Mar 23 2014 (PARI) A118914_row(n)=vecsort(factor(n)[, 2]~) \\ M. F. Hasler, Oct 12 2018 CROSSREFS Cf. A025487, A036035, A046523, A095904. Cf. A124010. Cf. A001221 (row lengths), A001222 (row sums). Sequence in context: A254613 A129265 A030358 * A135063 A124010 A212171 Adjacent sequences:  A118911 A118912 A118913 * A118915 A118916 A118917 KEYWORD nonn,tabf AUTHOR Eric W. Weisstein, May 05 2006 EXTENSIONS Corrected and edited by Daniel Forgues, Dec 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 18:11 EDT 2022. Contains 357002 sequences. (Running on oeis4.)