The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118890 Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0110 (n,k >= 0). 4
 1, 2, 4, 8, 15, 1, 28, 4, 52, 12, 97, 30, 1, 181, 70, 5, 338, 156, 18, 631, 339, 53, 1, 1178, 722, 142, 6, 2199, 1515, 357, 25, 4105, 3140, 862, 84, 1, 7663, 6444, 2018, 252, 7, 14305, 13116, 4614, 700, 33, 26704, 26513, 10348, 1846, 124, 1, 49850, 53280, 22844 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row n has ceiling(n/3) terms (n>=1). Sum of entries in row n is 2^n (A000079). T(n,0) = A049864(n). T(n,1) = A118892(n). Sum_{n>=0} k*T(n,k) = (n-3)*2^(n-4) (A001787). LINKS Alois P. Heinz, Rows n = 0..250, flattened FORMULA G.f.: G(t,z) = (1+(1-t)z^3)/(1 - 2z + (1-t)(1-z)z^3). EXAMPLE T(8,2) = 5 because we have 01100110, 01101100, 01101101, 00110110 and 10110110. Triangle starts:     1;     2;     4;     8;    15,   1;    28,   4;    52,  12;    97,  30,  1;   181,  70,  5;   338, 156, 18;   631, 339, 53, 1; MAPLE G:=(1+(1-t)*z^3)/(1-2*z+(1-t)*(1-z)*z^3): Gser:=simplify(series(G, z=0, 24)): P[0]:=1: for n from 1 to 18 do P[n]:=sort(coeff(Gser, z^n)) od: 1; for n from 1 to 18 do seq(coeff(P[n], t, j), j=0..ceil(n/3)-1) od; # yields sequence in triangular form MATHEMATICA nn=18; c=x^3; Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)), {x, 0, nn}], {x, y}]]//Flatten (* Geoffrey Critzer, Dec 25 2013 *) CROSSREFS Cf. A000079, A049864, A118892, A011787. Sequence in context: A028398 A155249 A118884 * A118869 A118897 A098056 Adjacent sequences:  A118887 A118888 A118889 * A118891 A118892 A118893 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, May 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 16:16 EDT 2021. Contains 342845 sequences. (Running on oeis4.)