This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118827 2-adic continued fraction of zero, where a(n) = if n=1(mod 2), +1, else -2*A006519(n/2). 5
 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -64, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Limit of convergents equals zero; only the 6-th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1. LINKS EXAMPLE For n>=1, convergents A118828(k)/A118829(k) are: at k = 4*n: -1/(2*A080277(n)); at k = 4*n+1: -1/(2*A080277(n)-1); at k = 4*n+2: -1/(2*A080277(n)-2); at k = 4*n-1: 0. Convergents begin: 1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8, 1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24, 1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32, 1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ... PROG (PARI) a(n)=local(p=+1, q=-2); if(n%2==1, p, q*2^valuation(n/2, 2)) CROSSREFS Cf. A006519, A080277; convergents: A118828/A118829; variants: A118821, A118824, A118830; A100338. Sequence in context: A068057 A003484 * A118830 A055975 A006519 A087258 Adjacent sequences:  A118824 A118825 A118826 * A118828 A118829 A118830 KEYWORD cofr,sign AUTHOR Paul D. Hanna, May 01 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 25 02:28 EDT 2013. Contains 225634 sequences.