login
A118824
2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.
6
-2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 32, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1
OFFSET
1,1
COMMENTS
Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.
LINKS
EXAMPLE
For n >= 1, convergents A118825(k)/A118826(k):
at k = 4*n: 1/A080277(n);
at k = 4*n+1: 2/(2*A080277(n)-1);
at k = 4*n+2: 1/(A080277(n)-1);
at k = 4*n-1: 0.
Convergents begin:
-2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,
-2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,
-2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,
-2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
MATHEMATICA
Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* Michael De Vlieger, Nov 06 2018 *)
PROG
(PARI) a(n)=local(p=-2, q=+1); if(n%2==1, p, q*2^valuation(n/2, 2))
CROSSREFS
Cf. A006519, A080277; convergents: A118825/A118826; variants: A118821, A118827, A118830; A100338.
Sequence in context: A232443 A376781 A118821 * A209402 A082641 A334507
KEYWORD
cofr,sign
AUTHOR
Paul D. Hanna, May 01 2006
STATUS
approved