login
A118821
2-adic continued fraction of zero, where a(n) = 2 if n is odd, -A006519(n/2) otherwise.
6
2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -32, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16
OFFSET
1,1
COMMENTS
Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are A118824, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.
LINKS
EXAMPLE
For n >= 1, convergents A118822(k)/A118823(k) are:
at k = 4*n: -1/A080277(n);
at k = 4*n+1: -2/(2*A080277(n)-1);
at k = 4*n+2: -1/(A080277(n)-1);
at k = 4*n-1: 0/(-1)^n.
Convergents begin:
2/1, -1/-1, 0/-1, -1/1, -2/1, 1/0, 0/1, 1/-4,
2/-7, -1/3, 0/-1, -1/5, -2/9, 1/-4, 0/1, 1/-12,
2/-23, -1/11, 0/-1, -1/13, -2/25, 1/-12, 0/1, 1/-16,
2/-31, -1/15, 0/-1, -1/17, -2/33, 1/-16, 0/1, 1/-32, ...
MATHEMATICA
Array[-2^(IntegerExponent[#, 2] - 1) /. -1/2 -> 2 &, 96] (* Michael De Vlieger, Nov 02 2018 *)
PROG
(PARI) a(n)=local(p=+2, q=-1); if(n%2==1, p, q*2^valuation(n/2, 2))
CROSSREFS
Cf. A006519, A080277; convergents: A118822/A118823; variants: A118824, A118827, A118830; A100338.
Sequence in context: A242753 A232443 A376781 * A118824 A209402 A082641
KEYWORD
cofr,sign
AUTHOR
Paul D. Hanna, May 01 2006
STATUS
approved