1,7

Zeros occur at A008776, or 2*3^(k-1), k > 0.

Table of n, a(n) for n=1..86.

Index entries for sequences related to "fractals"

a((3n-2)/3) = A028310(n), a((3n-1)/3) =A001477 & a(3n)=a(n), thus this sequence is a fractal.

a[1] = 1; a[n_] := Switch[ Mod[n, 3], 0, a[n/3], 1, (n - 1)/3, 2, (n - 2)/3]; Array[a, 90]

Cf. A003602, A101279.

Sequence in context: A291123 A292594 A093613 * A283904 A097289 A294207

Adjacent sequences: A118813 A118814 A118815 * A118817 A118818 A118819

nonn

Robert G. Wilson v, May 23 2006

approved