login
A118807
Number of partitions of n having no parts with multiplicity 3.
11
1, 1, 2, 2, 5, 6, 9, 12, 19, 24, 34, 43, 62, 77, 105, 132, 177, 220, 287, 356, 462, 570, 723, 888, 1121, 1370, 1705, 2074, 2570, 3111, 3816, 4601, 5617, 6743, 8170, 9777, 11794, 14058, 16858, 20029, 23932, 28334, 33692, 39772, 47133, 55468, 65471, 76840
OFFSET
0,3
COMMENTS
Column 0 of A118806.
Infinite convolution product of [1,1,1,0,1,1,1,1,1,1] aerated n-1 times. I.e., [1,1,1,0,1,1,1,1,1,1] * [1,0,1,0,1,0,0,0,1,0] * [1,0,0,1,0,0,1,0,0,0] * ... - Mats Granvik, Gary W. Adamson, Aug 07 2009
LINKS
FORMULA
G.f.: Product_{j>=1} (1 + x^j + x^(2j) + x^(4j)/(1-x^j)).
a(n) = A000041(n) - A183560(n) = A183568(n,0) - A183568(n,3). - Alois P. Heinz, Oct 09 2011
EXAMPLE
a(6) = 9 because among the 11 (=A000041(6)) partitions of 6 only [2,2,2] and [3,1,1,1] have parts with multiplicity 3.
MAPLE
g:=product(1+x^j+x^(2*j)+x^(4*j)/(1-x^j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..50);
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k) + x^(4*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 29 2006
STATUS
approved