This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118799 Determinants of 4 X 4 matrices of continuous blocks of 16 consecutive primes. 3
 880, -448, -1472, -240, 2480, -1352, -4128, -96, 2736, -2520, 120, 1080, 4288, 4880, 4600, 13368, 7056, 14560, 2960, 13320, 0, 24864, -11096, -24264, 0, -9168, -2128, -15792, 0, 18120, -5248, 6384, -21840, -38776, -20480, 20176, -72896, -69200, 40080, -37632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 4 X 4 analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this 4 X 4 prime case) block 1: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53; block 2: 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131; and so forth. All terms are even. - Harvey P. Dale, May 05 2016 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE a(1) = 880 because the determinant of the first continuous block of 16 primes is: | 2. 3. 5. 7.| |11. 13. 17. 19.| |23. 29. 31. 37.| |41. 43. 47. 53.|. a(10) = -2520 because the determinant of the 10th continuous block of 16 primes is: |29. 31. 37. 41.| |43. 47. 53. 59.| |61. 67. 71. 73.| |79. 83. 89. 97.|. a(21) = 0 because of the singular matrix: | 73. 79. 83. 89.| | 97. 101. 103. 107.| |109. 113. 127. 131.| |137. 139. 149. 151.|. a(25) = 0 because of the singular matrix: | 97. 101. 103. 107.| |109. 113. 127. 131.| |137. 139. 149. 151.| |157. 163. 167. 173.| MAPLE A118799 := proc(n)     local A, i, r, c ;     A := Matrix(4, 4) ;     i := n ;     for r from 1 to 4 do     for c from 1 to 4 do         A[r, c] := ithprime(i) ;         i := i+1 ;     end do:     end do:     LinearAlgebra[Determinant](A) ; end proc: # R. J. Mathar, May 05 2013 MATHEMATICA Module[{nn=60, prs}, prs=Prime[Range[nn]]; Table[Det[Partition[ Take[ prs, {n, n+15}], 4]], {n, nn-15}]] (* Harvey P. Dale, Apr 29 2016 *) CROSSREFS Cf. A000040, A067276, A117301, A118713. Sequence in context: A129313 A063051 A190030 * A206341 A024393 A006052 Adjacent sequences:  A118796 A118797 A118798 * A118800 A118801 A118802 KEYWORD easy,sign AUTHOR Jonathan Vos Post, May 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.