login
A118788
Triangle where T(n,k) = n!/(n-k)!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
4
1, 1, 1, 1, 3, 5, 1, 6, 23, 41, 1, 10, 65, 255, 469, 1, 15, 145, 930, 3679, 6889, 1, 21, 280, 2590, 16429, 65247, 123605, 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169, 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901, 1, 45, 1230, 24360
OFFSET
0,5
COMMENTS
Row sums are A118789, where Sum_{n>=0} A118789(n)*x^n/n! = exp( Sum_{n>=1} A032188(n)*x^n/n! ).
Main diagonal is A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves.
Secondary diagonal is A118790.
FORMULA
Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)].
EXAMPLE
Row sums e.g.f. equals the exponential of the diagonal e.g.f.:
1 + x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! +...+ A118789(n)*x^n/n! +...
= exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +...+ A032188(n)*x^n/n! +...).
Triangle begins:
1;
1, 1;
1, 3, 5;
1, 6, 23, 41;
1, 10, 65, 255, 469;
1, 15, 145, 930, 3679, 6889;
1, 21, 280, 2590, 16429, 65247, 123605;
1, 28, 490, 6090, 54789, 344694, 1371887, 2620169;
1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901; ...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
F(x)^2 = (1 + x) + 17/12*x^2 + 2*x^3 + 671/240*x^4 +...
F(x)^3 = (1 + 3/2*x + 5/2*x^2) + 4*x^3 + 1489/240*x^4 +...
F(x)^4 = (1 + 6/3*x + 23/6*x^2 + 41/6*x^3) + 8351/720*x^4 +...
F(x)^5 = (1 + 10/4*x + 65/12*x^2 + 255/24*x^3 + 469/24*x^4) +...
PROG
(PARI) {T(n, k)=local(x=X+X^2*O(X^(k+2))); n!/(n-k)!*polcoeff((x/(2*x+log(1-x)))^(n+1), k, X)}
CROSSREFS
Third column is A241765.
Sequence in context: A316152 A302204 A065077 * A196020 A346775 A028510
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 29 2006
STATUS
approved