login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118745 Triangle of coefficients of polynomials giving the n-anacci constants. 0

%I

%S -1,2,-1,4,-1,-1,6,0,-1,-1,8,1,0,-1,-1,10,2,1,0,-1,-1,12,3,2,1,0,-1,

%T -1,14,4,3,2,1,0,-1,-1,16,5,4,3,2,1,0,-1,-1,18,6,5,4,3,2,1,0,-1,-1,20,

%U 7,6,5,4,3,2,1,0,-1,-1,22,8,7,6,5,4,3,2,1,0,-1,-1,24,9,8,7,6,5,4,3,2,1,0,-1,-1,26,10,9,8,7,6,5,4

%N Triangle of coefficients of polynomials giving the n-anacci constants.

%H O. Deveci, Y. Akuzum, E. Karaduman, O. Erdag, <a href="https://doi.org/10.5539/jmr.v7n2p34">The Cyclic Groups via Bezout Matrices</a>, Journal of Mathematics Research, Vol. 7, No. 2, 2015, pp. 34-41.

%H Ömür Deveci, Zafer Adıgüzel, Taha Doğan, <a href="https://doi.org/10.7546/nntdm.2020.26.1.179-190">On the Generalized Fibonacci-circulant-Hurwitz numbers</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>

%e -1 + 2*x, -1 + 4*x - x^2, -1 + 6*x - x^3, ...

%e From _Michael De Vlieger_, Jul 31 2020: (Start)

%e Table begins:

%e -1, 2;

%e -1, 4, -1;

%e -1, 6, 0, -1;

%e -1, 8, 1, 0, -1;

%e -1, 10, 2, 1, 0, -1;

%e -1, 12, 3, 2, 1, 0, -1;

%e -1, 14, 4, 3, 2, 1, 0, -1;

%e -1, 16, 5, 4, 3, 2, 1, 0, -1;

%e -1, 18, 6, 5, 4, 3, 2, 1, 0, -1;

%e -1, 20, 7, 6, 5, 4, 3, 2, 1, 0, -1;

%e -1, 22, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1;

%e -1, 24, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1;

%e ... (End)

%t Array[Join[{-1}, {2 (# - 1)}, Range[# - 4, -1, -1]] &, 12, 2] // Flatten (* _Michael De Vlieger_, Jul 31 2020 *)

%K sign,tabf

%O 2,2

%A _Eric W. Weisstein_, Apr 28 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 02:07 EDT 2020. Contains 337392 sequences. (Running on oeis4.)