This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118738 Number of ones in binary expansion of 5^n. 3
 1, 2, 3, 6, 5, 6, 7, 8, 12, 13, 11, 15, 13, 14, 17, 20, 20, 20, 24, 19, 26, 29, 25, 27, 30, 19, 31, 33, 29, 36, 37, 33, 39, 34, 42, 40, 44, 42, 38, 46, 53, 54, 49, 52, 52, 53, 50, 49, 54, 60, 58, 60, 54, 64, 58, 74, 61, 67, 74, 65, 61, 77, 74, 81, 86, 78, 87, 85, 82, 89, 83, 79 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also binary weight of 10^n, which is verified easily enough: 10^n = 2^n * 5^n; it is obvious that 2^n in binary is a single 1 followed by n 0s, therefore, in the binary expansion of 2^n * 5^n, the 2^n contributes only the trailing zeros. - Alonso del Arte, Oct 28 2012 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA a(n) + A118738(n) = A061785(n) for n >= 1. - Robert Israel, Dec 24 2017 EXAMPLE a(2) = 3 because 5^2 = 25 is 11001, which has 3 on bits. MAPLE seq(convert(convert(5^n, base, 2), `+`), n=0..100); # Robert Israel, Dec 24 2017 MATHEMATICA Table[DigitCount[5^n, 2, 1], {n, 0, 71}] (* Ray Chandler *) PROG (PARI) a(n) = hammingweight(5^n) \\ Iain Fox, Dec 24 2017 CROSSREFS Cf. A000120, A061785, A118737. Sequence in context: A253413 A093783 A096861 * A175067 A051377 A057723 Adjacent sequences:  A118735 A118736 A118737 * A118739 A118740 A118741 KEYWORD base,nonn,easy AUTHOR Zak Seidov, May 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.