Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Jun 17 2020 02:08:31
%S 2,3,5,7,11,13,17,31,71,101,107,113,131,149,157,167,179,181,191,199,
%T 311,347,353,359,389,701,743,751,761,787,797,919,941,953,971,983,991,
%U 1009,1031,1061,1091,1097,1109,1151,1217,1229,1259,1283,1301,1409,1439
%N Chen primes for which the reversal is also a Chen prime.
%H Robert Israel, <a href="/A118725/b118725.txt">Table of n, a(n) for n = 1..10000</a>
%e 17 and its reversal 71 are both Chen primes.
%p revdigs:= proc(n) local L,k;
%p L:= convert(n,base,10);
%p add(L[-k]*10^(k-1),k=1..nops(L))
%p end proc:
%p filter:= proc(n) local r;
%p if not isprime(n) then return false fi;
%p r:= revdigs(n);
%p isprime(r) and numtheory:-bigomega(n+2) <= 2 and numtheory:-bigomega(r+2) <= 2
%p end proc:
%p select(filter, [2,seq(i,i=3..2000,2)]); # _Robert Israel_, Jun 16 2020
%t cpQ[n_]:=Module[{rev=FromDigits[Reverse[IntegerDigits[n]]]}, PrimeOmega[ n+2]<3 && PrimeQ[rev]&&PrimeOmega[rev+2]<3]; Select[Prime[ Range[ 400]], cpQ] (* _Harvey P. Dale_, Jul 17 2011 *)
%Y Cf. A109611.
%K base,nonn,less
%O 1,1
%A Luc Stevens (lms022(AT)yahoo.com), May 21 2006
%E Corrected by _Harvey P. Dale_, Jul 17 2011