login
A118725
Chen primes for which the reversal is also a Chen prime.
3
2, 3, 5, 7, 11, 13, 17, 31, 71, 101, 107, 113, 131, 149, 157, 167, 179, 181, 191, 199, 311, 347, 353, 359, 389, 701, 743, 751, 761, 787, 797, 919, 941, 953, 971, 983, 991, 1009, 1031, 1061, 1091, 1097, 1109, 1151, 1217, 1229, 1259, 1283, 1301, 1409, 1439
OFFSET
1,1
LINKS
EXAMPLE
17 and its reversal 71 are both Chen primes.
MAPLE
revdigs:= proc(n) local L, k;
L:= convert(n, base, 10);
add(L[-k]*10^(k-1), k=1..nops(L))
end proc:
filter:= proc(n) local r;
if not isprime(n) then return false fi;
r:= revdigs(n);
isprime(r) and numtheory:-bigomega(n+2) <= 2 and numtheory:-bigomega(r+2) <= 2
end proc:
select(filter, [2, seq(i, i=3..2000, 2)]); # Robert Israel, Jun 16 2020
MATHEMATICA
cpQ[n_]:=Module[{rev=FromDigits[Reverse[IntegerDigits[n]]]}, PrimeOmega[ n+2]<3 && PrimeQ[rev]&&PrimeOmega[rev+2]<3]; Select[Prime[ Range[ 400]], cpQ] (* Harvey P. Dale, Jul 17 2011 *)
CROSSREFS
Cf. A109611.
Sequence in context: A253717 A186307 A321420 * A117835 A120639 A141263
KEYWORD
base,nonn,less
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), May 21 2006
EXTENSIONS
Corrected by Harvey P. Dale, Jul 17 2011
STATUS
approved