login
A118720
Cubes which are divisible by the sum of their digits.
3
1, 8, 27, 216, 512, 1000, 1728, 4913, 5832, 8000, 13824, 17576, 19683, 27000, 35937, 46656, 59319, 64000, 74088, 110592, 125000, 157464, 185193, 216000, 287496, 314432, 328509, 343000, 373248, 421875, 474552, 512000, 592704, 658503, 729000
OFFSET
1,2
COMMENTS
Intersection of A000578 and A005349. - Robert Israel, Jun 27 2017
LINKS
EXAMPLE
4913 is in the sequence because it is a cube, the sum of its digits is 4+9+1+3=17 and 4913 is divisible by 17.
MAPLE
select(t -> t mod convert(convert(t, base, 10), `+`) = 0, map(t -> t^3, [$1..100])); # Robert Israel, Jun 28 2017
MATHEMATICA
Select[Range[100]^3, Divisible[#, Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Apr 25 2011 *)
PROG
(PARI) isok(n) = ispower(n, 3) && ((n % sumdigits(n)) == 0); \\ Michel Marcus, Jun 28 2017
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), May 21 2006
STATUS
approved