This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118711 Integers n such that the n-th triangular number t_n has all its base 12 digits contained in {1,5,7,11}. 0
 1, 13, 61, 82, 898, 2962, 2989, 9133, 20077, 20653, 28669, 29266, 35581, 35842, 37501, 99133, 236674, 286717, 424621, 424957, 821698, 941650, 1704301, 1722370, 2978413, 3328258, 4494466, 10022317, 40392829, 49870141, 50668882, 53933053 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In base 12 all primes greater than 3 end in the digits 1, 5, 7, E, where X is 10 and E is 11. They are the digits that satisfies GCD(d,12)=1. The sequence in base 12 is: 1, 11, 51, 6X, 62X, 186X, 1891, 5351, E751, EE51, 14711, 14E2X, 18711, 188XX, 19851, 49451, E4E6X, 119E11, 185891, 185E11, 33762X, 394E2X, 6X2351, 6E08XX, EE7751, 11460XX, 1608E6X, 3433E51, 1163E591, 14850051, 14E7632X, 1608E311, 18331451, 1870E191, 1974E311, ..., . Note that all elements end in 1 or X. The corresponding triangular numbers after the first end in the digits 17 or 77, but not respectively. LINKS FORMULA a(n)=m if the m-th triangular number t_m=m*(m+1)/2 has its base 12 digits contained in {1,5,7,11}. EXAMPLE a(4)=82=6X since the triangular number t=82*(82+1)/2=3403=1E77. MAPLE L:=[]: pd:={1, 5, 7, 11}: for w to 1 do for n from 1 to 10^6 do t:=n*(n+1)/2; lod:=convert(t, base, 12); sod:=convert(lod, set); if sod subset pd then L:=[op(L), [n, t]] fi; od od; L; MATHEMATICA fQ[n_] := Union@ Join[{1, 5, 7, 11}, IntegerDigits[n(n + 1)/2, 12]] == {1, 5, 7, 11}; Do[ If[fQ@n, AppendTo[lst, n]], {n, 10^8}] (* Robert G. Wilson v *) CROSSREFS Cf. A000217, A119033, A119034. Sequence in context: A145474 A217606 A002647 * A028874 A087106 A142402 Adjacent sequences:  A118708 A118709 A118710 * A118712 A118713 A118714 KEYWORD nonn,base AUTHOR Walter Kehowski, May 24 2006 EXTENSIONS Edited and extended a(23)-a(32) by Robert G. Wilson v, Jun 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 23 12:38 EDT 2013. Contains 225587 sequences.