This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118686 Triangle read by rows. Let g[n] = n if n is a prime, otherwise g[n] = 1. Let p[0] = 1; p[n] = g[n]*p[n - 1]. Row n gives coefficients of Product_{k=0..n} [x - p[k]], with row 0 = {1}. 2

%I

%S 1,1,-1,1,-2,1,1,-4,5,-2,1,-10,29,-32,12,1,-16,89,-206,204,-72,1,-46,

%T 569,-2876,6384,-6192,2160,1,-76,1949,-19946,92664,-197712,187920,

%U -64800,1,-286,17909,-429236,4281324,-19657152,41707440,-39528000,13608000,1,-496,77969,-4190126,94420884,-918735192

%N Triangle read by rows. Let g[n] = n if n is a prime, otherwise g[n] = 1. Let p[0] = 1; p[n] = g[n]*p[n - 1]. Row n gives coefficients of Product_{k=0..n} [x - p[k]], with row 0 = {1}.

%e Triangle begins:

%e 1

%e 1, -1,

%e 1, -2, 1

%e 1, -4, 5, -2

%e 1, -10, 29,-32, 12

%e 1, -16, 89, -206, 204, -72

%e 1, -46, 569, -2876, 6384, -6192, 2160

%t g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] a = Join[{{1}}, Table[Reverse[CoefficientList[Product[x - p[n], {n, 0, m}], x]], {m, 0, 10}]] aout = Flatten[a]

%Y Cf. primorial numbers A034386, Stirling numbers of the first kind A008275.

%Y Cf. A034386, A008275, A119724, A119489 (row sums of absolute values).

%K sign,tabl

%O 0,5

%A _Roger L. Bagula_, May 20 2006

%E Edited by _N. J. A. Sloane_, Oct 08 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 07:53 EDT 2019. Contains 324347 sequences. (Running on oeis4.)