login
A118667
a(n) = a(n-1)+ (abs(2^a(n-1)*a(n-1)) mod 10).
1
0, 1, 3, 7, 13, 19, 21, 23, 27, 33, 39, 41, 43, 47, 53, 59, 61, 63, 67, 73, 79, 81, 83, 87, 93, 99, 101, 103, 107, 113, 119, 121, 123, 127, 133, 139, 141, 143, 147, 153, 159, 161, 163, 167, 173, 179, 181, 183, 187, 193, 199, 201, 203, 207, 213, 219, 221, 223, 227, 233
OFFSET
0,3
COMMENTS
Apart from the first two terms all the other numbers can be formed adding in sequence 2, 4, 6, 6, 2 and so on. Example 1+(2)=3; 3+(4)=7; 7+(6)=13; 13+(6)=19; 19+(2)=21; ...
LINKS
FORMULA
a(n) = a(n-1)+ (abs(2^a(n-1)*a(n-1)) mod 10) being a(0) = 0 and a(1) = 1
EXAMPLE
a(2)= 1 + abs(2^1 *1)mod 10 = 1 + 2 mod 10 = 1 + 2 = 3
MAPLE
ANM:=proc(N) local an, i, anminus1, anplus1; anminus1:=0; an:=1; print (anminus1); print (an); for i from 2 by 1 to N do anplus1:=an+(abs(2^an*an) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);
MATHEMATICA
Join[{0}, NestList[#+Mod[Abs[2^# #], 10]&, 1, 60]] (* Harvey P. Dale, Jul 01 2022 *)
CROSSREFS
Sequence in context: A310257 A310258 A310259 * A353357 A352140 A258117
KEYWORD
nonn
AUTHOR
STATUS
approved