%I #5 Mar 30 2012 18:40:37
%S 1,1,2,3,2,4,3,4,3,3,3,3,3,2,4,3,4,3,3,2,3,3,3,4,4,3,3,3,3,3,3,3,3,4,
%T 3,3,2,3,4,3,3,4,3,3,4,3,3,3,3,3,3,4,3,3,3,3,4,3,3,3,3,3,4,3,3,3,2,2,
%U 4,2,3,3,4,3,4,3,3,4,3,2,4,4,4,3,3,2,3,3,3,2,2,4,4,3,3,3,3,3,3,3,3
%N Least number of squares that add up to the partition number A000041(n).
%F a(n) = A002828(A000041(n)).
%e a(20) = 3 because P(20) = 627 = 25^2 + 1^2 + 1^2.
%e a(36) = 2 because P(36) = 17977 = 124^2 + 51^2, which is prime.
%e a(66) = 2 because P(66) = 2323520 = 1504^2 + 248^2.
%e a(67) = 2 because P(67) = 2679689 = 1205^2 + 1108^2.
%e a(100) = 3 because P(100) = 190569292 = 13730^2 + 1434^2 + 6^2.
%Y Cf. A000009, A000041, A000203, A008284, A002828, A001318, A046063, A103266, A118487.
%K easy,nonn
%O 0,3
%A _Jonathan Vos Post_, May 17 2006