login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Reverse digits of largest Chen primes, append to sequence if result is larger Chen prime then previous one with reverse digits.
0

%I #2 Mar 31 2012 14:40:00

%S 2,3,5,7,11,31,71,101,701,941,971,991,9001,9011,9221,9521,9941,70001,

%T 76001,97001,99401,99431,99571,99989,940001,973001,987101,993401,

%U 997811,999431

%N Reverse digits of largest Chen primes, append to sequence if result is larger Chen prime then previous one with reverse digits.

%C Although Chen primes are a subset of primes, this sequence is not a subset of A098922. The first number that is not member of the later is 9011.

%p # Check if number is Chen prime ischenprime:=proc(n); if (isprime(n) = 'true') then if (isprime(n+2) = 'true' or numtheory[bigomega](n+2) = 2) then return 'true' else return 'false' fi fi end: #Reverse digits obrni_stev:=proc(n) local i, tren, tren1, st, ans; ans:=[ ]: tren:=n: tren1:=0: for i while (tren>0) do st:=round(10*frac(tren/10)): ans:=[op(ans), st]: tren:=trunc(tren/10): od: for i from 0 to nops(ans)-1 do tren1:= tren1 + op(nops(ans)-i, ans)*10^(i): od: return tren1 end: ts_inv_prav_chen_pra:= proc(n) local i, tren, ans; tren:=0: ans:=[ ]: for i from 1 to n do if (ischenprime(i)='true' and ischenprime(obrni_stev(i))='true' and obrni_stev(i)>tren) then ans:=[op(ans),obrni_stev(i)]: tren:=obrni_stev(i): fi: od: return ans end: ts_inv_prav_chen_pra(200000);

%Y Cf. A004087, A098922, A109611.

%K nonn,base,less

%O 1,1

%A _Jani Melik_, May 05 2006