login
a(n) = 8*n^3 + n.
2

%I #26 Feb 01 2023 19:22:27

%S 0,9,66,219,516,1005,1734,2751,4104,5841,8010,10659,13836,17589,21966,

%T 27015,32784,39321,46674,54891,64020,74109,85206,97359,110616,125025,

%U 140634,157491,175644,195141,216030,238359,262176,287529,314466,343035

%N a(n) = 8*n^3 + n.

%C (8*n^3 + n, 8*n^3 - n) solves the Diophantine equation 2*(X-Y)^3-(X+Y)=0.

%C (m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 and where m is a positive integer. Also ((m*n^k+n)/2, (m*n^k-n)/2) solves the Diophantine equation: m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 where m is an odd number.

%C 24*a(n) = (4n+1)^3 + (4n)^3 + (4n-1)^3. [_Bruno Berselli_, May 12 2014]

%H Vincenzo Librandi, <a href="/A118465/b118465.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: 3*x*(x+3)*(3*x+1)/(-1+x)^4. - _R. J. Mathar_, Nov 14 2007

%F a(n) = n*A081585(n). - _Vincenzo Librandi_, May 13 2014

%p A118465:=n->8*n^3 + n; seq(A118465(n), n=0..30); # _Wesley Ivan Hurt_, May 13 2014

%t Table[8 n^3 + n, {n, 0, 35}]

%t CoefficientList[Series[3 x (x + 3) (3 x + 1)/(-1 + x)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, May 13 2014 *)

%t LinearRecurrence[{4,-6,4,-1},{0,9,66,219},40] (* _Harvey P. Dale_, Feb 01 2023 *)

%o (Magma) [8*n^3 + n: n in [0..30]]; // _Wesley Ivan Hurt_, May 13 2014

%Y Cf. A006003, A081585.

%K nonn,easy

%O 0,2

%A _Mohamed Bouhamida_, May 16 2006, Oct 02 2007

%E Edited by _Stefan Steinerberger_, Jul 24 2007