%I #23 Jun 19 2021 04:52:07
%S 13933,23633,28229,49223,71363,79633,81239,90547,96857,97613,108827,
%T 115363,117443,126781,130657,133733,153533,157679,176819,186799,
%U 197389,206651,221327,222199,228139,246947,266297,272203,276049,279221,282493,290627,292493,296299
%N Primes p=prime(i) of level (1,5), i.e., such that A118534(i) = prime(i-5).
%C This subsequence of A125830 and of A162174 gives primes of level (1,5): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
%H Remi Eismann, <a href="/A118464/b118464.txt">Table of n, a(n) for n = 1..10000</a>
%e prime(5061) = 49223 has level (1,5): prime(5062) = 49253 = 2*prime(5061) - prime(5061-5) = 2*prime(5061) - prime(5056).
%t With[{m = 5}, Prime@ Select[Range[m + 1, 3*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* _Michael De Vlieger_, Jul 16 2017 *)
%o (PARI) lista(nn) = my(c=6, v=primes(6)); forprime(p=17, nn, if(2*v[c]-p==v[c=c%6+1], print1(precprime(p-1), ", ")); v[c]=p); \\ _Jinyuan Wang_, Jun 18 2021
%Y Cf. A117078, A117563, A118534, A125830, A162174.
%K nonn
%O 1,1
%A _Rémi Eismann_, May 04 2006
%E Edited by _N. J. A. Sloane_, May 14 2006
%E More terms from _Rémi Eismann_, May 21 2006
%E Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009