

A118428


Decimal expansion of heptanacci constant.


2



1, 9, 9, 1, 9, 6, 4, 1, 9, 6, 6, 0, 5, 0, 3, 5, 0, 2, 1, 0, 9, 7, 7, 4, 1, 7, 5, 4, 5, 8, 4, 3, 7, 4, 9, 6, 3, 4, 7, 9, 3, 1, 8, 9, 6, 0, 0, 5, 3, 1, 5, 7, 9, 9, 5, 2, 4, 4, 7, 8, 2, 1, 5, 3, 4, 0, 0, 9, 5, 1, 9, 8, 0, 3, 0, 9, 6, 2, 2, 1, 8, 3, 5, 6, 3, 1, 4, 1, 5, 7, 7, 0, 2, 2, 7, 1, 9, 0, 1, 7, 0, 9, 9, 1, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Other roots of the equation x^7  x^6  ...  x  1 see in A239566. For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link.  Vladimir Shevelev, Mar 21 2014


LINKS

Table of n, a(n) for n=1..105.
S. Litsyn and V. Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499512.
V. Shevelev, A property of nbonacci constant, Seqfan (Mar 23 2014)
Eric Weisstein's World of Mathematics, Heptanacci Number
Eric Weisstein's World of Mathematics, Heptanacci Constant


EXAMPLE

1.9919641966050350210...


MATHEMATICA

RealDigits[x/.FindRoot[x^7+Total[x^Range[0, 6]]==0, {x, 2}, WorkingPrecision> 110]][[1]] (* Harvey P. Dale, Dec 13 2011 *)


CROSSREFS

Cf. A066178, A239566.
Sequence in context: A175618 A145280 A144667 * A166925 A178164 A216035
Adjacent sequences: A118425 A118426 A118427 * A118429 A118430 A118431


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein, Apr 27 2006


STATUS

approved



