login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118427 Decimal expansion of hexanacci constant. 2
1, 9, 8, 3, 5, 8, 2, 8, 4, 3, 4, 2, 4, 3, 2, 6, 3, 3, 0, 3, 8, 5, 6, 2, 9, 2, 9, 3, 3, 9, 1, 4, 2, 5, 7, 5, 2, 7, 3, 0, 0, 8, 0, 8, 6, 5, 5, 6, 8, 8, 2, 1, 7, 5, 3, 2, 1, 6, 3, 5, 9, 0, 6, 5, 6, 5, 6, 7, 0, 2, 2, 7, 8, 0, 1, 4, 1, 7, 2, 4, 0, 2, 9, 8, 6, 5, 7, 5, 0, 7, 0, 2, 2, 6, 8, 9, 9, 7, 9, 7, 3, 2, 7, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The continued fraction expansion starts 1, 1, 59, 1, 10, 2, 1, 6, 2, 1, 6, 1, 1, 7, 1, 71, 7, 1, 6, 8,... - R. J. Mathar, Mar 09 2012

For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014

LINKS

Table of n, a(n) for n=1..105.

S. Litsyn and V. Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.

V. Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)

Eric Weisstein's World of Mathematics, Hexanacci Number

Eric Weisstein's World of Mathematics, Hexanacci Constant

Eric Weisstein's World of Mathematics, Hexanacci Number

EXAMPLE

1.9835828434243263303...

MATHEMATICA

RealDigits[ Root[ #^6 - #^5 - #^4 - #^3 - #^2 - # - 1 &, 2] , 10, 105] // First (* Jean-Fran├žois Alcover, Feb 07 2013 *)

CROSSREFS

Cf. A001592.

Sequence in context: A210649 A144666 A224236 * A199170 A155532 A086306

Adjacent sequences:  A118424 A118425 A118426 * A118428 A118429 A118430

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Apr 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 09:00 EDT 2014. Contains 240957 sequences.