login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118411 Numerator of sum of reciprocals of first n pentatope numbers A000332. 4
1, 6, 19, 136, 83, 119, 656, 73, 190, 121, 1816, 559, 679, 815, 3872, 1139, 886, 513, 2360, 2023, 2299, 2599, 11696, 3275, 7306, 1353, 5992, 1653, 5455, 5983, 26176, 7139, 15538, 8435, 12184, 3293, 3553, 11479, 49360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Denominators are A118412. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392.

LINKS

Table of n, a(n) for n=1..39.

FORMULA

A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)).

EXAMPLE

a(1) = 1 = numerator of 1/1.

a(2) = 6 = numerator of 6/5 = 1/1 + 1/5.

a(3) = 19 = numerator of 19/15 = 1/1 + 1/5 + 1/15.

a(4) = 136 = numerator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.

a(5) = 55 = numerator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.

a(10) = 190 = numerator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.

a(20) = 2360 = numerator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.

PROG

(Pari) s=0; for(i=4, 50, s+=1/binomial(i, 4); print(numerator(s))) /* Phil Carmody, Mar 27 2012 */

CROSSREFS

Cf. A000332, A022998, A026741, A118391, A118391, A118412.

Sequence in context: A097899 A223505 A054236 * A091876 A041066 A060748

Adjacent sequences:  A118408 A118409 A118410 * A118412 A118413 A118414

KEYWORD

easy,frac,nonn

AUTHOR

Jonathan Vos Post, Apr 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 01:49 EDT 2015. Contains 261184 sequences.