This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118396 Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ). 3
 1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS E.g.f. of triangle A118394 is: exp(x+y*x^3), where A118394(n,k) = n!/k!/(n-3*k)!. More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..450 FORMULA a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1. MAPLE a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*       a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))     end: seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017 PROG (PARI) {a(n)=n!*polcoeff(exp(sum(k=0, ceil(log(n+1)/log(3)), x^(3^k))+x*O(x^n)), n)} CROSSREFS Cf. A118394, A118395; variants: A118393, A118932. Sequence in context: A098538 A033814 A118395 * A193375 A185787 A299273 Adjacent sequences:  A118393 A118394 A118395 * A118397 A118398 A118399 KEYWORD nonn AUTHOR Paul D. Hanna, May 07 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 15:49 EDT 2018. Contains 316365 sequences. (Running on oeis4.)