login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118353 Semi-diagonal (two rows below central terms) of pendular triangle A118350 and equal to the self-convolution cube of the central terms (A118351). 5
1, 3, 21, 163, 1353, 11760, 105681, 973953, 9154821, 87428388, 845894700, 8273978100, 81682757317, 812829371205, 8144563709391, 82104333340467, 832125695906313, 8473862660311392, 86661931504395228, 889705959333345756 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

MATHEMATICA

T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]];

Table[T[n, n-3], {n, 3, 30}] (* G. C. Greubel, Feb 18 2021 *)

PROG

(PARI) my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3)

(Sage)

@CachedFunction

def T(n, k):

    if (k<0 or n<k): return 0

    elif (k==0): return 1

    elif (k==n): return 0

    else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1)

[T(n, n-3) for n in (3..30)] # G. C. Greubel, Feb 18 2021

CROSSREFS

Cf. A118350, A118351, A118352, A118354.

Sequence in context: A166696 A058194 A179815 * A262977 A214391 A046637

Adjacent sequences:  A118350 A118351 A118352 * A118354 A118355 A118356

KEYWORD

nonn,changed

AUTHOR

Paul D. Hanna, Apr 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 07:53 EST 2021. Contains 341649 sequences. (Running on oeis4.)