login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118291 a(1) = 1. a(n) = number of terms among the sequence's first (n-1) terms which are divisible by the largest prime dividing a(n-1), or which are divisible by 1 if a(n-1)= 1. 2
1, 1, 2, 1, 4, 2, 3, 1, 8, 4, 5, 1, 12, 2, 7, 1, 16, 8, 9, 3, 4, 10, 2, 12, 5, 3, 6, 7, 2, 15, 4, 16, 17, 1, 34, 2, 19, 1, 38, 2, 21, 3, 10, 5, 6, 11, 1, 47, 1, 49, 4, 24, 12, 13, 1, 55, 2, 27, 14, 5, 8, 29, 1, 63, 6, 16, 31, 1, 68, 3, 17, 4, 33, 3, 19, 3, 20, 9, 21, 7, 8, 35, 9, 23, 1, 85, 5, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

If a(n-1) = 1, then a(n) = n-1, obviously.

LINKS

Table of n, a(n) for n=1..88.

EXAMPLE

a(13)= 12. So a(14) = the number of terms among the first 13 terms which are divisible by the largest prime dividing 12 (which is 3).

a(7)=3 and a(13) = 12 are the two terms each divisible by 3, so a(14) = 2.

MAPLE

A006530 := proc(n) local ifs, i ; if n <= 3 then n ; else ifs := ifactors(n)[2] ; max( seq(op(1, i), i=ifs)) ; fi ; end: A118291 := proc(n) local a, anxt, i ; a := [1, 1] ; while nops(a) < n do anxt := 0 ; for i in a do if i mod A006530(op(-1, a)) = 0 then anxt := anxt+1 ; fi ; od: a := [op(a), anxt] ; od; a ; end: A118291(200) ; # R. J. Mathar, Sep 06 2007

CROSSREFS

Cf. A118290.

Sequence in context: A128520 A269370 A123755 * A118290 A208569 A132223

Adjacent sequences:  A118288 A118289 A118290 * A118292 A118293 A118294

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 22 2006

EXTENSIONS

More terms from R. J. Mathar, Sep 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 17 04:09 EST 2017. Contains 296096 sequences.